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Abstract:  Our focus in this research is to developed block method for solving higher order ordinary differential equation 

using power series on implicit one-step. In order to achieve the aim and objective of this research, we used 

interpolation, collocation and evaluate a power series approximation at some chosen grid and off-grid points to 

generate an implicit continuous hybrid one-step method. As requirement of any numerical analyst, the properties of 

one-step block method was done and results showed that it is consistent, convergent, zero stable and with region of 

absolutely stable. The method was tested with numerical examples solved using the existing methods and our 

method was found to give better results when compared with the existing method. Obviously, the solution graphs 

show the convergence of the method with exact solutions. 

Keywords:  Block method, higher order ODE, interpolation, collocation, power series 

 

Introduction 

Most of the problems in science, mathematical physics and 

engineering are formulated by differential equations. The 

solution of differential equations is a significant part to 

develop the various modeling in science and engineering. 

There are many analytical methods for finding the solution of 

ordinary differential equations. But a few numbers of 

differential equations have analytic solutions where a large 

numbers of differential equations have no analytic solutions. 

In recent years, mathematical modeling of processes in 

biology, physics and medicine, particular in dynamic 

problems, cooling of a body and simple harmonic motion has 

led to significant scientific advances both in mathematics and 

biosciences (Brauer & Chavez, 2012, Elazzouzi et al., 2019). 

A differential equation can be classified into ordinary 

differential equation (ODE), partial differential equation 

(PDE), stochastic differential equation (SDE), impulsive 

differential equation (IDE), delay differential equation (DDE), 

etc. (Stuart & Humphries 1996). 

In recent times, the integration of Ordinary Differential 

Equations (ODEs) is investigated using some kind of block 

methods. We consider the solution of equation in the form; 

      0000 '',,',,'' yxyyxyyyxfy   (1.1) 

 

Literature has shown that many numerical problems can be 

modeled into problem (1.1). Though the conventional method 

for modeling (1.1) is by reducing it tosystem of first order 

ordinary differential equations. Over the years, different 

numerical methods have been developed in order to model the 

solution of equation (1.1). Among these methods are block 

method, linear multistep method, hybrid method and Rung-

Kutta method, (Lambert 1973, Gear 1966, 1971& 1978, 

Suleiman, 1979& 1989). Recently, some scholars have been 

made an effort to develop hybrid block method for solving 

(1.1) directly, among others are Kuboye & Omar (2015), 

Omar & Abdelrahim (2016), Abdelrahim & Omar (2016), 

Alkasassbeh & Omar (2017), Skwame et al. (2019a, 2019b & 

2020).  

In literature, some scholars such as Omar (1999) and Olabode 

(2007) proposed block methods for solving higher order 

ordinary differential equations directly without reduction to a 

systems of first order ODEs. Abdelraim et al. (2019), 

Moammad & Omar (2017), Omar & Alkasassbeh (2016), 

Abdelrahim & Omar (2016) have proposed one-step block 

hybrid method for the direct solution of second order ordinary 

differential equationand yield at a good results, their work 

motivate us to propose block method for solving higher order 

ordinary differential equation using power series on implicit 

one-step. 

 

Materials and Method 

We consider a power series approximate solution in the form: 
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where p and q are number of distinct interpolation and 

collocation, respectively. 

Differentiating ((2.1) twice, yield 
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  (2.5) 

 

Solving for sa j' in the (2.5) and the resulting value of sa j'  are substituted into (2.1) to yields a continuous implicit hybrid 

one step method of the form: 
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Evaluating (2.6) to obtain the continuous form as, 
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Differentiating (2.6) once, yields 
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Where 
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Evaluating (2.9) at all points, yields 
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Combining and solving (2.8) and (2.11) simultaneously, yields the explicit schemes as; 
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Properties of the block method 

The analysis of the block method, which includes the order, error constant, consistency, zero stability, convergence and region of 

absolute stability of the method shall be studied. 

Order and error constant 

Consider the linear operator defined by   hxy ; , where, 
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Expanding  mm YFandY  in Taylor series and comparing the coefficients of h  gives 
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Definition 3.1: The linear operator L  and the associate block method are said to be of order p  if 

22110 .0,0   pppp CCCCCC   is called the error constant and implies that the truncation error 

is given by   332
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Comparing the coefficient of h  in (3.4), according to Skwame et al. (2019b) and Sunday (2018), the method is of order 4p  

and the error constant are given respectively by, 

 87888
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Consistency of the method 

Definition 3.2: According to Dahlquist (1956), a block method is said to be consistent if its order is greater than or equal to one. 

From the above analysis, it is obvious that our method is consistent. 

Zero stability of the method 

Definition 3.3: The numerical method is said to be zero-stable, if the roots ksqs ,,2,1,   of the first characteristics 

polynomial  q  defined by     EqAq  0det  satisfies 1sq  and every root satisfies 1sz  have 

multiplicity not exceeding the order of the differential equation, (Sunday 2018). The first characteristic polynomial is given by, 
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Thus, solving for q in  16 qq gives 1,0,0,0,0q . 

Hence, the method is said to be zero stable. 

Convergence of the block method 

Theorem 3.1: the necessary and sufficient conditions for 

linear multistep method to be convergent are that it must be 

consistent and zero-stable. Hence our method is convergent 

according to Dahlquist (1956).  

Region of absolute stability of our method 

Definition 3.4: the region of absolute stability is the region of 

the complex z  plane, where hz   for which the method 

is absolute stable. To determine the region of absolute 

stability of the block method, the methods that compare 

neither the computation of roots of a polynomial nor solving 

of simultaneous inequalities was adopted. Thus, the method 

according to Sunday (2018) is called the boundary locus 

method. Applying the method we obtain the region of 

absolute stability in as; 

 

 
Fig. 1: Region of absolute stability of our method 

 

 

Numerical implementation of the method 

In this section, we will test the effectiveness and validity of 

one-step block method by applying on some second order 

highly stiff problems of the form (1.1) without reduction 

method. Our result are compared with the existing methods of 

Omole & Ogunware (2018), Olanegan et al. (2018), Skwame 

et al. (2020), Adeniran & Ogundare (2015) and Adeniran et 

al. (2015). 

 

Problem 4.1: Real-life Problem 

Cooling of a body 

The temperature y degrees of a body t  minutes after being 

placed in a certain room, satisfies the differential equation

03
2

2


dt

dy

dt

yd
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z  or 

otherwise, find y in terms of t given that 60y  when 

0t  and 35y
 
when 4ln6t . Find after how many 

minutes the rate of cooling of the body will have fallen below 

one degree per minute, giving your answer correct to the 

nearest minute. How cool does the body get? 

Formulation of the Problem 
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See Omole & Ogunware (2018); Olanegan et al. (2018) and 

Skwame et al. (2020). 

 

 

Table 1: Absolute errors for Problem 4.1 

X Exact Result Computed Result 
Error in our 

Method 

Error in 

Omole & 

Ogunware 

(2018) 

Error in 

Olanegan et 

al. (2018) 

Error in 

Skwame et 

al. (2020) 

0.1 59.12576267952015738700 59.12576267952015738700 0.0000e-00 3.5500e-11 7.4764e-06 2.3000e-17 

0.2 58.28018626750980633900 58.28018626750980633500 4.0000e-18 4.5800e-11 2.9394e-05 1.7100e-16 

0.3 57.46233114762558861700 57.46233114762558860800 9.0000e-18 7.0000e-11 6.4802e-05 4.3700e-16 

0.4 56.67128850781193210600 56.67128850781193208900 1.7000e-17 6.5000e-11 1.1279e-05 8.1300e-16 

0.5 55.90617933041637530700 55.90617933041637528100 2.6000e-17 3.3300e-11 1.7250e-04 1.2910e-15 

0.6 55.16615341541284956400 55.16615341541284952600 3.8000e-17 4.2000e-11 2.4310e-04 1.8640e-15 

0.7 54.45038843564751105000 54.45038843564751099900 5.1000e-17 4.3800e-11 3.2383e-04 2.5250e-15 

0.8 53.75808902305729847200 53.75808902305729840700 6.5000e-17 1.0700e-10 4.1393e-04 3.2690e-15 

0.9 53.08848588484580976200 53.08848588484580968100 8.1000e-17 6.5800e-11 5.1271e-04 4.0890e-15 

1.0 52.44083494863438001100 52.44083494863437991400 9.7000e-17 1.6900e-10 6.1951e-04 4.9800e-15 

 

 
Fig. 2: Graphical solution of Problem 4.1. 
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Problem 4.2 

Consider a highly stiff linear second order problem  

    1.0,10',00,0100'100''  hyyyyy  

With exact solutions:   xexy  . 

See Skwame et al. (2020), Adeniran & Ogundare (2015), Adeniran et al. (2015). 

 

Table 2: Absolute errors for Problem 4.2 

X Exact Result Computed Result 
Error in 

our Method 

Error in 

Skwame et 

al. (2020) 

Error in 

Adeniran & 

Ogundare 

(2015) 

Error in 

Adeniran et 

al. (2015) 

0.1 0.90483741803595957316 0.90483741803595952927 4.3890e-17 3.7209e-15 1.0547e-14 2.9000e-09 

0.2 0.81873075307798185867 0.81873075307798182897 2.9700e-17 8.7829e-14 1.7764e-14 1.8700e-08 

0.3 0.74081822068171786607 0.74081822068171781989 4.6180e-17 1.8840e-12 2.3426e-14 9.9700e-08 

0.4 0.67032004603563930074 0.67032004603563925767 4.3070e-17 4.0785e-11 2.7978e-14 5.2510e-08 

0.5 0.60653065971263342360 0.60653065971263337424 4.9360e-17 8.8239e-10 3.1308e-14 2.7480e-07 

0.6 0.54881163609402643263 0.54881163609402638382 4.8810e-17 1.9092e-08 3.3973e-14 1.4360e-06 

0.7 0.49658530379140951470 0.49658530379140946379 5.0910e-17 4.1306e-07 3.5638e-14 7.4970e-06 

0.8 0.44932896411722159143 0.44932896411722154097 5.0460e-17 8.9370e-06 3.6748e-14 3.9150e-05 

0.9 0.40656965974059911188 0.40656965974059906128 5.0600e-17 1.9336e-04 3.7304e-14 2.0440e-04 

1.0 0.36787944117144232160 0.36787944117144227189 4.9710e-17 4.1836e-03 3.7415e-14 1.0680e-03 

 

 
Fig. 3: Graphical solution of Problem 4.2 

 

 

Discussion of Results and Conclusion 

The developed block method for solvinghigher order ordinary 

differential equation on implicit one-step second derivative 

was studied in this research. The method was derived using 

interpolation and collocate as a basic function. The properties 

of the one-step block method was analyzed. The method was 

tested with some numerical examples solved by Omole & 

Ogunware (2018), Olanegan et al. (2018), Skwame et al. 

(2020), Adeniran & Ogundare (2015), Alkasassbeh & Omar 

(2015) and it is obvious that our method found to give better 

accuracy when compared. The solution graph shown the 

convergence of the method in contrast with the exact 

solutions. 
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